

Abstract— Cloud computing has its characteristics along with

some critical issues that should be handled to improve the

performance and increase the efficiency of the cloud platform. These

issues are related to resources management, security, and fault

tolerance. The purpose of this research is to handle the resource

management problem, which is to allocate and schedule virtual

machines resources of cloud computing in a way that help providers

to reduce makespan time of tasks. In this paper, a hybrid algorithm is

introduced for dynamic tasks scheduling over cloud's virtual

machines. This hybrid algorithm merges the behaviors of three

techniques from the swarm intelligence techniques that are used to

find near-optimal solutions to difficult combinatorial problems. It

exploits the advantages of ant colony behavior, the behavior of

particle swarm and honeybee foraging behavior. Experimental results

reinforce the strength of the proposed hybrid algorithm. They also

prove that the proposed hybrid algorithm is the superior and

outperformed ant colony optimization, particle swarm optimization

and artificial bee colony algorithms.

Index Terms—Cloud Computing; Task Scheduling; Ant Colony

Optimization; Particle Swarm Optimization; Artificial Bee Colony;

Makespan; CloudSim.

I. INTRODUCTION

LOUD computing is catching more attention because it is

the only one of its kind, and it has many unique merits

that can be utilized to ease services execution. Scalability of

cloud resources lets a flexible provisioning of resources and

supplies on demand computing infrastructure for applications

[1]. The propagation of cloud as a general-purpose computing

wakes up awareness of the requirement for versatile

management methods. So, the success of cloud services is

based on the power of cloud management algorithms [2]. On

one hand, cloud computing allows users to access services that

This work was supported in part by the Computer Science Department,

Faculty of Computers and Information's, Menofia University, Egypt.

Gamal F. Elhady is with the Computer Science Department, Faculty of

Computers and Information's, Menofia University, Egypt. (e-mail:
gamal.farouk@ci.menofia.edu.eg).

Medhat A. Tawfeek is with the Computer Science Department, Faculty of

Computers and Information's, Menofia University, Egypt. (e-mail:
medhattaw@yahoo.com).

remain in a remote data centers, other than local computers.

Data-centers are the main computing infrastructures that

supply many kinds of services via scaling capacity. The cloud

provider accumulates a large number of hosts or servers in a

data center where each host may run one or multiple virtual

machines (VMs). On the other hand, cloud providers shall

present easy and fast application deployment to cloud users

and improve resources utilization [3]. One of the main

technologies that let cloud computing to be possible is the

virtualization. Virtualization technology has simplified the

hard resource consolidation. Cloud providers can earn the

benefits of consolidation in terms of reduced management

costs and allowing multiple users to share computing, storage

and networking infrastructure provided by the service

provider. So the use of virtualization in the cloud is essential

because the servers can be sliced up for users as virtual cloud

instances in the form of individual VMs. The VMs may

include processors running at different speeds, memory and

storage that deal with various storage systems at different

locations. Moreover, applications can be carried out

independently without needing for any particular

configuration [4]. In cloud computing, VMs need to be

allocated and scheduled in a way that providers can realize

high VMs utilization. The right tasks scheduler over VMs

shall enforce the scheduling manner to the changing

environment and the types of tasks. The user application

consists of multiple tasks that need allocation over VMs. The

task scheduler handles assigning preferred VMs to the

submitted tasks so that the overall VMs are utilized

effectively. Such a scheduling decision becomes more uneasy

in the cloud because its environment is heterogeneous and

frequently mutates [2]. Therefore, cloud scheduling strategies

that are based on Swarm Intelligence (SI) techniques, for

example, Ant Colony Optimization (ACO), Artificial Bee

Colony (ABC) and Particle Swarm Optimization (PSO) are

preferable. SI is based on the studying of the combined

behaviors raised from interactions between individuals and the

environment to solve very hard optimization problems. They

offer excellent performance and prove its capabilities for

handling scheduling problems in cloud computing. Moreover,

they are very flexible to design and implement [4].

In this paper, a new hybrid algorithm is introduced to find

Hybrid Algorithm based on Swarm Intelligence

Techniques for Dynamic Tasks Scheduling in

Cloud Computing

Gamal F. Elhady, Medhat A. Tawfeek.

C

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 123

the near-optimal VMs allocation for dynamic cloud tasks to

minimize the makespan that is the finishing time of the last job

or maximum completion time. This hybrid algorithm merges

the behaviors of ACO, ABC and PSO techniques. The

simulation based experiments using CloudSim in [5], studies

the performance of proposed hybrid algorithm compared to

ACO in [6], PSO in [7], and ABC in [8]. The results from

experiments show that the proposed hybrid algorithm can

obtain better VMs utilization and remarkably outperforms the

compared methods on the basis of makespan and degree of

imbalance. The rest of this paper is organized as follows.

Section 2 covers background that outlines the basics of ACO,

PSO and ABC and presents the commonly related work in

cloud task scheduling. The cloud task scheduling based on the

proposed hybrid algorithm is detailed in section 3. The

implementation and simulation results are investigated in

section 4. The conclusion to this paper is invoked in section 5.

II. BACKGROUND

Cloud computing can be rated a natural evolution from grid

computing by delivering computing resources as services to

users remotely [1]. The fundamental features of a cloud

computing are scalability to meet user requests, providing

multiple service levels and dynamic configuration of services

on demand [3]. In cloud computing, it is paramount to

schedule tasks on its suitable resources, and the capacities of

different VMs need to be taken into account when a user sends

a service request. Scheduling decision in cloud computing

becomes more complex because its environment changes

frequently [6]. The purpose of scheduling is finding an

optimal mapping from a finite set of objects. An easy

scheduling problem aims to one with a small number of the

objects, so it can be simply worked out by enumerations. On

the contrary a hard scheduling problem if its purpose is

optimization needs heuristic and approximation methods.

Enumeration is not workable for cloud scheduling problems

because only a few cases of these problems have solvable

algorithms in polynomial time [9]. The direction is finding

near-optimal solutions that are acceptable to achieve accuracy

and time. Heuristic is considered a near-optimal algorithm to

find good solutions quickly. It iteratively enhances a candidate

solution concerning a particular measure of quality but does

not guarantee to find the optimal solution [10]. Heuristic or

metaheuristic algorithms obtained much popularity because

they supply acceptable solutions in a suitable time for solving

hard problems in many fields. Many new algorithms from

metaheuristics algorithms depend on swarm intelligence (SI)

[4]. Examples of techniques in which SI is inspired are bees

colonies, ants colonies, fish schools and birds flocks where the

whole group of individuals does the desired task that may not

be performed individually. Recently, several researchers have

proposed algorithms based on ACO, PSO and ABC for

scheduling problems in distributed environments such as grids

and clouds [4].

A. The Ant Colony Optimization (ACO)

The main idea of ACO is to simulate natural behavior of ant

colonies. Fig. 1 presents the pseudo-code of ACO [10]. The

algorithm mainly contains two iterated steps: solution

construction and pheromone update. Solution construction- the

construction of solutions is done according to a probabilistic

transition rule that depends on pheromone trails and heuristic

information. Pheromone update- the update of the pheromone

is performed using the generated solutions. A pheromone

updating rule carried out in two phases: evaporation phase

where the pheromone trail is lowered automatically and

reinforcement phase where a positive value is added [6].

Initialize the pheromone trails.
Repeat
 For each ant Do

 Solution construction using the pheromone trail;

 Update the pheromone trails:

 Evaporation;

 Reinforcement;

Until stopping criteria

Output: Best solution found or a set of solutions.

Fig. 1. Pseudo code of basic ACO

B. Particle Swarm Optimization (PSO)

The PSO algorithm works as a simulation by modifying the

position of each particle depending on its velocity using the

global best position and the best position of the particle [7].

Over time, the particles go together around right solution. Fig.

2 shows the pseudo code of PSO algorithm [10]. The velocity

value is computed due to how far a particle is from the target

by Eq. (1).

))((

))(()()1(

22

11

tXgbCU

tXpbCUtVtV

i

iiii

 (1)

Where, Vi (t+1) represents the new velocity of an particle

and Vi (t) represents its current velocity. U1 and U2 are two

random variables in the range [0, 1]. The constants C1and C2

represent the learning factors. The x-vector records the current

position of the particle in the search space. Each particle keeps

track of its coordinates in the solution space which are

associated with the best solution (fitness) that has achieved so

far by that particle. This value is called personal or particle

best (pbi). Another best value that is tracked by the PSO is the

best value obtained so far by any particle in the

neighbourhood of that particle. This value is called global best

(gb). After updating the velocity of each particle, each particle

will moves to the new position in the decision space [7], using

Eq. (2).

)1()()1(tVtXtX iii
 (2)

Random initialization of the whole swarm
Repeat

 Evaluate object function f (xi)

 For all particles i
 Update velocities by Eq. (1)

 Move to the new position by Eq. (2)

 If f (xi) < f (pBesti) Then pBesti = xi
 If f (xi) < f (qBest) Then qBest = xi

 EndFor

Until stopping criteria

Output: Best solution found or a set of solutions.

Fig. 2. Pseudo code of basic PSO

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 124

C. The Artificial Bee Colony(ABC)

The ABC algorithm that is based on the clever foraging

behavior of honey bee swarm is an optimization algorithm.

Fig. 3 shows the pseudo code for the ABC algorithm [10]. The

algorithm begins with scout bees that scan the search space

randomly. The quality of visited sites by these bees is then

rated. After that, sites that have the highest fitness are selected

for a neighborhood search. Then, the algorithm continues

searching for the selected sites by assigning more active bees

to search in the neighborhood of these sites [8].

The colony will contain after iteration two groups for its

new population, the solutions from each selected sites and the

scout bees assigned to generate random solutions. This process

is repeated until meeting a given stopping criterion [8].

Random initialization of the whole colony of bees
Evaluate the fitness of the population of bees

Repeat
 Select sites for neighborhood search

 Determine the patch size

 Recruit bees for selected sites and evaluated their fitness
 Select the representative bee from each patch

 Assign remaining bees to search randomly and evaluate their fitness

Until stopping criteria

Output: Best solution found or a set of solutions.

Fig. 3. Pseudo code of basic ABC

D. Related Work

A cloud task scheduling based on ACO algorithm is

implemented in [6]. The main objective of this algorithm is

minimizing the makespan of a given tasks set. It handles all

the tasks requests according to different VMs available in a

cloud. Another ACO scheduling was proposed to handling job

scheduling within a cloud in [11]. It maximizes the throughput

of the heterogeneous computing system. In this algorithm, the

modification was done in basic pheromone updating function

to give better resource utilization. The algorithms in [6] and

[11] depend on the fact that each task is executed with

different speed on a different processor. This information is

exploited to save information about which processors are

suitable for each job. Therefore, the pheromone value is used

by the scheduler to determine the desirable assigning of a

particular task into a specific Virtual Machine (VM). The

modified ant colony optimization algorithm (MACO) is

proposed in [12]. The objective of this modification is to

enhance the performance of the basic ant colony optimization

algorithm and enhance the execution time of the tasks. This

approach introduces self-adapting criteria for control

parameters of the basic ant colony optimization. The Max–

Min Ant System (MMAS) in [13] was proposed to control the

pheromone amount. In this method, Local Search (LS)

technique has been implemented to select the swap that

reduces makespan. Load balancing of nodes using ACO

proposed in [14] is used for achieving load balancing. In this

algorithm, an ant can move in two directions: forward and

backward. Such as an ant searches for the food is called

forward direction and return to the nest is the backward

direction. This behavior is helpful for balanced the node

quickly. The results of this algorithm provide better

utilization of resources but consumes more power. Another

disadvantage is that it has a high network overhead. Cloud

task scheduling based on Load balancing Ant Colony

Optimization (LBACO) which is used to find the best VMs

allocation for each task dynamically was proposed in [15]. It

works on minimization of makespan of tasks that is distributed

among VMs. The MACOLB algorithm that is the MACO for

load balancing has been proposed in [16]. The main goal of

MACOLB is to balance the load and to try to minimize the

makespan of a given tasks set. The load balancing factor in

MACOLB is related to the task finishing rate. It is proposed to

make the finishing rate of VMs being similar, and the ability

of the load balancing will be increased.

The PSO for tasks scheduling in the cloud has been

proposed in [7]. It simulates the behavior of particle swarm.

This algorithm is used to find the near-optimal VMs allocation

for tasks in the dynamic cloud system to minimize the

makespan of tasks. A PSO to schedule jobs in a cloud that

considers both computations of job costs and job data transfer

costs has been proposed in [17]. It dynamically enhances the

main cost of a job-resource-mapping. Cloud task scheduling

based on artificial bee colony algorithm has been proposed in

[8]. It simulates the behavior of foraging bees to the cloud

scheduling problem. It tracks the overall best solution with

high quality related to makespan by any of the bees. The high

quality of solution means the small time of solution makespan

and low quality means large solution makespan. Honey Bee

Behavior inspired Load Balancing (HBB-LB) has been

proposed in [18]. The main goal of HBB-LB is to achieve

well-balanced load across VMs and minimize the makespan.

The VMs are grouped depending their loads in three sets:

overloaded VMs, under loaded VMs and balanced VMs. Each

set contains the number of VMs. HBB-LB removes jobs from

an overloaded VMs and makes the decision to place the

removed jobs in one of the under loaded VMs. A job works as

a honey bee and the VMs with low load are considered as the

food sources for honey bees. In this paper, cloud task

scheduling depends on a hybrid approach has been proposed

for allocation the incoming tasks to the available VMs

considering into account the makespan to minimize the VMs

consumption and achieve user satisfaction.

III. CLOUD SCHEDULING BASED THE PROPOSED HYBRID

ALGORITHM

The pseudo code of the proposed hybrid procedure is shown

in Fig. 4. The hybrid algorithm paves the way for finding the

near-optimal resource allocation for dynamic tasks in the

cloud to minimize the makespan of tasks. It manipulates the

overall best-founded solution by any member (ant, bee or

particle) at any iteration. In an initialization phase of the

proposed ABC algorithm, the parameters are initialized.

Number_of_BeesAntsParticles variable represents the

members that are the total number of bees, particles, and ants.

Each bee and each particle generate a random solution. The

solution is represented as an array of VM’s IDs that represents

the order of VMs. The first task will be allocated to the first

ID in the matrix of VM’s IDs; the second task will be

allocated to the second ID and so on. Then each

CommonBoard generates a random solution. The hybrid

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 125

algorithm uses four CommonBoard.

Input: List of Cloudlet (Tasks) and List of VMs
Output: the best solution for tasks allocation on VMs

Steps:

 1. Initialize:
 Set value of parametersNumber_of_BeesAntsParticles, Number_of_Bees,

Number_of_Ants, Number_of_Particles,
Number_of_CommonBoard,Max_Number_of_Stagnation ,tmax.

SetV_Max.

Set an initial value τij(t)=c for each path between tasks and VMs.
Set t=1.

Set BSolution=null.

2. Generate Random Solution for each Bee.
3. Generate Random Solution for each Particle.

4. Generate Random Solution for each CommonBoard.

5. Check to update BSolution
6. For k :=1 to Number_of_BeesAntsParticles

IF k is a bee

Perform Bees()
ElseIF k isan ant

Perform Ants()

Else
Perform Particles()

End IF

7. Apply global pheromone update.
8. Increment t by one.

9. If (t < tmax)

 Goto step 4

 Else

 Print Bsolution.

 End If

10. Stop

Fig. 4. Pseudo code of hybrid procedure

The first CommonBoard registers and shares the best-

founded solution by any bees with other members like ants

and particles. The second CommonBoard registers and shares

the best-founded solution by any ants with other members like

bees and particles.The third CommonBoard registers and

shares the best-founded solution by any particles with other

members like bees and ants. The fourth CommonBoard

registers and shares a randomly generated solution with all

members like bees, particles, and ants. These four

CommonBoards arms the hybrid algorithm by sharing all the

possible best-founded solutions from any members. The

iterative phase simulates the technique of hybrid procedure.

The members are iterated using for loop and each member

type is handled by the suitable module from Bees(), Ants() and

Particles() modules. The BSolution variable is checked

iteratively to hold the overall best-founded solution.

A. The Bee() module

The Bees() module is presented in Fig. 5. In this module,

the bee firstly gains a neighbor solution proportional to its

current solution. Logically, each solution has some neighbor.

The natural neighbor solution relative to a current solution is a

replacement of the current solution where two, three or some

adjacent VM’s IDs have been swapped. If the neighbor

solution is better than the current solution, this bee will accept

the better neighbor. After that, the BSolution will be checked

and a MentionAdvert () module is called.

Max_Number_of_Stagnation is a threshold value used to

prevent the bee from stagnation solution. If so, the current

bee’s selects another area for searching by selecting one

solution from 2-th, 3-th, or 4-th CommonBoard randomly.

 Bees()
1. Generate a neighbor Solution.

2. If (a neighbor solution quality > current bee solution quality)

 bee accepts the better neighbor solution
 ResetNumber_of_Stagnation to zero

 Check to update BSolution
 Perform MentionAdvert ()

 Else

 Increase Number_of_Stagnation by one

 End If

3. If (Number_of_Stagnation >Max_Number_of_Stagnation)

 Select solution from 2-th,3-th, or 4-th CommonBoard randomly.
 ResetNumber_of_Stagnation to zero.

 End If

4. Return

Fig. 5. Pseudo code of Bees()

B. The MentionAdvert()

The MentionAdvert() module is presented in Fig. 6. This

module simulates the action of how the members of hybrid

algorithm contact or share the solutions with each other's.

 MentionAdvert()
 1. If (the mentioned item is Bee)

 If (a mentioned solution quality > 1-th CommonBoard solution quality)

 1-th CommonBoard accepts the solution of mentioned item

 End if

 Else If (mentioned item is Ant)
 If (a mentioned solution quality > 2-th CommonBoard solution quality)

 2-th CommonBoard accepts the solution of mentioned item

 End if

 Else
 If (a mentioned solution quality > 3-th CommonBoard solution quality)

 3-th CommonBoard accepts the solution of mentioned item

 End if

 End If

 2. Generate Random Solution for 4-th CommonBoard.

Return

Fig. 6. Pseudo code of MentionAdvert()

The mentioned member’s solution is compared against the

solution of its commonboard. If the solution of mentioned

member is preferable, the commonboard will modify its

solution by accepting the mentioned solution.

C. The Ants()

The Bees() module is presented in Fig. 5. In this module,

the bee firstly gains a neighbor solution proportional to its

current solution. Logically, each solution has some neighbor.

The natural neighbor solution relative to a current solution is a

replacement of the current solution where two, three or some

adjacent VM’s IDs have been swapped.

The Ants()module is presented in Fig. 7. The ant selects the

starting VM for the first task randomly.

Ants()
 1. Place this Ant on the starting VM randomly.
 2. Do ant_trip while ScoutAnt does not end its trips

 Ant chooses the VM for the next task according to Eq. (1).

 End Do
 3. Check to update the Bsolution.

 4. Perform MentionAdvert ()

 5. Apply local pheromone update.

Return

Fig. 7. Pseudo code of Ants()

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 126

After that, it constructs a solution by moving from one VM

to another until completing a solution. The ant chooses VMj for

next taski by probabilistic transition rule that is computed by

Eq.(3).

otherwise

allowedjif
t

t

tp k

alloweds isis

ijij

k

ij
k

,0

][)]([

][)]([

)(

 (3)

Where, τij(t) shows the pheromone concentration on the

path between taski and VMj. The symbol allowedk express the

allowed VMs for antk. The term ηij represents the visibility or

heuristic information that represents the expected execution

time for taski on VMj. Finally, the two parameters α and β

control the weight of the pheromone and the visibility

information respectively.

After the completion of a tour of ant, the BSolution will be

checked and a MentionAdvert() module is called. The ant also

lays a small quantity of pheromone on each edge (i,j) that this

ant traveled through. This process is called local pheromone

update.

D. The Particles()

The Particles() module is presented in Fig. 8. This module

demonstrates the manner of particles to solve a problem.

Particles()

1. Calculate Particle Velocity according to Eq. (4).
2. Use Velocity to update Particle Data

 3. If (obtained solution quality > current solution quality)

Particle accepts the obtained solution
Reset Number_of_Stagnation to zero

Check to update BSolution

Perform MentionAdvert ()

Else

Increase Number_of_Stagnation by one

End If
4. If (Number_of_Stagnation > Max_Number_of_Stagnation)

Select solution from 1-th, 3-th, or 4-th CommonBoard randomly

Reset Number_of_Stagnation to zero

 End If

 Return

Fig. 8. Pseudo code of Particles()

The velocity is computed considering the BSolution. This form

defines velocity as the measure of how the current particle is

far from BSolution. The velocity of each particle in PSO is

computed by Eq. (4).

pBest

BSolutionMaxV
V

_
 (4)

Where, V is the computed velocity of the inactive particle, and

pBest variable represents the best fitness value of particle’s

solution. It means that the particles far from the BSolution

would carry out an effort to follow with the other particles by

flying faster toward the BSolution. Once the velocity of the

particle has been obtained, the modifying solution is done by

swapping some of VM’s IDs. Particles are pushed towards the

BSolution by copying pieces from the BSolution solution.

IV. IMPLEMENTATION & EXPERIMENTAL RESULTS

A. Parameters Setting of Cloud Simulator

Simulation is a technique that simulates the behavior of a

specific system by actually playing back observations from

this system. The researcher has used CloudSim for

implementing the experiments in a simulated cloud

environment because CloudSim can be used to simulate data

centers, host, service brokers, scheduling and allocation

policies of a large scaled cloud platform [5]. The parameters

setting of cloud simulator is depicted in Table 1.

TABLE I. PARAMETERS SETTING OF CLOUDSIM

Entity Type Parameters Value

Tasks

(cloudlets)

Length of task 1000-20000

Total number of tasks 100-1000

Virtual

Machines

Total number of VMs 25

MIPS 500-2000

VM memory(RAM) 128-2048

Bandwidth 500-1000

Number of PEs

requirement
1-4

Datacenters

Number of
Datacenters

5

Number of Hosts 10

B. Parameters evaluation and setting of hybrid algorithm

The control parameters of hybrid algorithm

(Number_of_BeesAntsParticles,Number_of_Bees,Number_of_

Ants,Number_of_Particles,Number_of_CommonBoard,Max_N

umber_of_Stagnation,V_MAX, α, β, tmax)are sensitive and must

be fine-tuned. Several values for each parameter were tested

while all the others were held constant. Table 2 shows the

suitable values settings of the proposed hybrid algorithm

parameters that are experimentally determined. The parameter

settings of the proposed hybrid algorithm were determined to

be Number_of_BeesAntsParticles=50,Number_of_Bees=25,

Number_of_Ants=5,Number_of_Particles=20,Number_of_Co

mmonBoard=4, Max_Number_of_Stagnation=10, V_MAX=5,

α=0.2, β=0.8, tmax=100.

TABLE II. SELECTED PARAMETERS OF HYBRID ALGORITHM

Parameter Value

Number_of_BeesAntsParticles 50

Number_of_Bees 25

Number_of_Ants 5

Number_of_Particles 20

Number_of_CommonBoard 4

Max_Number_of_Stagnation 10

V_MAX 5

α 0.2

β 0.8

tmax 100

C. Implementation results of hybrid,ABC,PSO and ACO

The cloud task scheduling algorithms to be compared in the

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 127

experiments include ABC algorithm in [8], PSO in [7], ACO

in [6] and the proposed hybrid algorithm. The parameter

settings of ABC algorithm are as follows.

Number_of_Bees=100,Number_of_active=75,Number_of_Sco

ut=15, Number_of_Inactive=10, Max_number_of_Vists=70,

Prob_Mistake=0.1, Prob_Presuasion=0.90 and tmax=100 as in

[8]. The parameter settings of PSO algorithm are as follows.

Number_of_particles=100, V_MAX=8 and tmax=100 as in [7].

The parameter settings of ACO algorithm are as follows.

m(number of ants) = 10, tmax= 100, α = 0.3, β= 1,Q(adaptive

parameter)=100 and = 0.4 as in [6].

In the following experiments, the makespan with different

tasks set is computed. The average makespan of the hybrid

algorithm, ABC, PSO, and ACO are shown in Fig. 9. It can

be seen from Fig. 9, with the increase of the quantity task, the

hybrid algorithm takes less time than ABC, PSO, and ACO

algorithms. This indicates that the proposed algorithms take

less time to execute than other methods because the proposed

hybrid algorithm has intelligently different concepts for

exploring the search space. Beside that strategies cooperation

from ABC, PSO and ACO are used to share and accumulate

information to find efficiently good solutions.

Fig. 9. Average makespan of ACO, PSO, ABC and Hybrid

The explanation of how the proposed hybrid algorithms

outperform ABC, PSO and ACO is as follows. The hybrid

algorithms model the behavior of honey bees, swarm fly and

ant colony in a mixed algorithm to solve the cloud task

scheduling problem. It tracks the overall best solution that is

associated with the makespan length, founded by any member.

At the same time, it saves the best solution founded by a

similar group of members and share them with other two

groups by feeding information in an external CommonBoards

and simultaneously incorporates continuous updating of

pheromone.

There are different activities for the groups of similar

members. There is a group of bees that simulate the skillful

foraging behavior of honey bee swarm. There is a group of

particles that simulate the efficient foraging behavior of

swarm fly over an environment following the best members of

the swarm and directing their movement toward right areas

from their environment. There is a group of ants that simulate

the effective foraging behavior of ants that try to search for the

abundant food sources.

The bees continue aggregating neighbor solutions from a

particular area until this field is consumed. After that, they

check the CommonBoards for selecting another abundant area.

The particles advance the position of each particle

successively based on its velocity using the global best-known

solution and the best solution known to a particle. The ants

exploit a particular kind of chemical pheromone to

communicate with each other and to contact bees and

particles. They go ahead to construct the solution by sensing

pheromone on the allowed paths. After any ant completes its

tour, it lays a quantity of pheromone called local pheromone

updating. The global pheromone updating reinforces

pheromone on the edges belonging to the best-founded tour by

any ants, bees or particles. These are the reasons why hybrid

algorithm outperforms other algorithms.

The degree of imbalance (DoI) measures the imbalance

among VMs. The small value of DoI tells that the load of the

system is more balanced and efficient [15]. Three different

methods can measure DoI.

The first method measures the difference between the

maximum and minimum completion time of VMs that is

defined as in Eq. (5).

 (5)

Where, ATmax and ATminrepresent the actual maximum and

minimum completion time of VMs [16]. TheDI1 of the hybrid

algorithm, ABC, PSO and ACO is shown in Fig. 10.

Fig. 10. DI1 ofACO, PSO, ABC, and Hybrid

The second method measures the degree of imbalance, as in

Eq. (6).

 avgT

TT
DI minmax

2

 (6) (4)

Where, Tmax, Tmin and Tavg are the maximum, minimum and

average completion time of VMs respectively [8]. TheDI2 of

the hybrid algorithm, ABC, PSO and ACO is shown in Fig.

11.

0
50
100
150
200
250
300
350
400
450

100 200 300 400 500 600 700 800 900 1000

M
ak

e
sp

an

Number of tasks

ACO

PSO

ABC

Hybrid

0

50

100

150

200

250

100 200 300 400 500 600 700 800 900 1000

D
e

gr
e

e
 o

f
im

b
al

an
ce

 (
D
I 1
)

Number of tasks

ACO

PSO

ABC

Hybrid

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 128

Fig. 11. DI2 of ACO, PSO, ABC and Hybrid

The third method that measures the degree of imbalance

using standard deviation is given by Eq. (7).

listVMjallforxx
n

DI
n

j j 1

2
_

3)(
1

 (7) (5)

Where, DI3 is the standard deviation, N is the number of VMs,

xj is the completion time of VMj and ̅ is the average

completion time of all VMs. If value of DI3 is small, it means

that the differences in load are small and the load on VMs is

more balanced [7]. The DI3 of the hybrid algorithm, ABC,

PSO and ACO is shown in Fig. 12.

Fig. 12. DI3 of ACO, PSO, ABC and Hybrid

It can be seen from Fig. 10 – Fig. 12 that the hybrid can

achieve better load balancing than ACO, PSO and ABC

algorithms. The VMs in a data center have a different amount

of processing powers. The proposed hybrid algorithm

searches for a solution that assign tasks firstly to the most

powerful VM and then to the lowest that trying to balance the

load of the VMs.

V. CONCLUSIONS

In this paper, a hybrid algorithm for handling cloud

computing tasks scheduling has been proposed. The behaviors

of an ant colony, particle swarm and honeybee are mixed in

the proposed hybrid algorithm. After that, an evaluation of the

proposed hybrid algorithm compared to artificial bee colony,

ant colony optimization, and particle swarm optimization

algorithms have been performed. Firstly the best values of

parameters for the hybrid algorithm, experimentally

determined. Then the algorithms in applications with different

sets of tasks evaluated. Simulation results prove that proposed

hybrid algorithm is the superior, achieves better resource

utilization and significantly outperforms the compared

algorithms on the basis of makespan and degree of imbalance.

REFERENCES

[1] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski, "Cloud

Computing Principles and Paradigms", Wiley Publishing, 2011.

[2] Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya,
"Interconnected Cloud Computing Environments: Challenges,

Taxonomy, and Survey", ACM Comput. Surv., vol. 47, no. 1, pp. 1-7,

may 2014
[3] Akinlolu Olumide Akande, Nozuko Aurelia April, and Jean-Paul Van

Belle, "Management Issues with Cloud Computing", in Proceedings of

the Second International Conference on Innovative Computing and
Cloud Computing, New York, USA, pp. 119-124, 2013.

[4] Elina Pacini, Cristian Mateos, and Carlos GarcÃa Garino, "Distributed

job scheduling based on Swarm Intelligence: A survey", Computers \&
Electrical Engineering, vol. 40, no. 1, pp. 252-269, 2014.

[5] Ghalem, B., Fatima Zohra, T., and Wieme, Z. "Approaches to Improve

the Resources Management in the Simulator CloudSim" in ICICA 2010,
LNCS 6377, pp. 189–196, 2010.

[6] Medhat A. Tawfeek, Ashraf El-Sisi, Arabi E. keshk and F. A. Torkey,

"Cloud Task Scheduling Based on Ant Colony Optimization",
International Arab Journal of Information Technology (IAJIT), vol. 12,

no. 2, pp. 129-137,2015.

[7] Ashraf El-Sisi, Medhat A. Tawfeek, Arabi E. keshk and F. A. Torkey,
"Intelligent Method for Cloud Task Scheduling Based on Particle

Swarm Optimization Algorithm", The International Arab Conference on

Information Technology(ACIT), Oman, 2014.
[8] Medhat A. Tawfeek, Ashraf El-Sisi, Arabi E. keshk, F. A. Torkey,

"Dynamic Task Scheduling in Cloud Computing Based on Honey Bee

Behavior", International Conference on Industry Academia
Collaboration (IAC), Egypt, 2015.

[9] R.F. Tavares Neto and M. Godinho Filho, "Literature Review regarding

Ant Colony Optimization Applied to Scheduling Problems: Guidelines
for Implementation and Directions for Future Research", Engineering

Applications of Artificial Intelligence, vol. 26, no. 1, pp. 150-161, 2013.
[10] El-Ghazali Talbi, "Metaheuristics from Design to Implementation",

Hoboken, New Jersey: John Wiley & Sons, Inc., 2009.

[11] B. Soumya, M. Indrajit, and P. Mahanti, "Cloud Computing Initiative
using Modified Ant Colony Framework," In the World Academy of

Science, Engineering and Technology, vol. 56, pp. 221-224, 2009.

[12] Medhat A. Tawfeek, Ashraf El-Sisi, Arabi E. keshk and F. A. Torkey,
"An Ant Algorithm for Cloud Task Scheduling", International

Workshop on Cloud Computing and Information Security CCIS, pp.

169-172, China, 2013.
[13] Stutzle Thomas and H Hoos Holger, "MAX-MIN Ant System", Future

Generation Computer Systems, vol. 16, no. 8, pp. 889-914, 2000.

[14] K. and Sharma, P. and Krishna, V. and Gupta, C. and Singh, K.P. and
Nitin, N. and Rastogi, R. Nishant, "Load Balancing of Nodes in Cloud

Using Ant Colony Optimization", in Computer Modelling and

Simulation (UKSim), pp. 3-8, 2012.
[15] Kun Li, Gaochao Xu, Guangyu Zhao, Yushuang Dong, and D. Wang,

"Cloud Task Scheduling Based on Load Balancing Ant Colony

Optimization", in Chinagrid Conference (ChinaGrid), pp. 3-9, Aug
2011.

[16] Arabi E. keshk, Ashraf El-Sisi, Medhat A. Tawfeek, F. A. Torkey,

"Intelligent Strategy of Task Scheduling in Cloud Computing for Load
Balancing", International Journal of Emerging Trends & Technology in

Computer Science (IJETTCS), vol. 2, no. 6, pp.12-22,2013.

[17] S. Pandey, Linlin Wu, S.M. Guru, and R. Buyya, "A Particle Swarm
Optimization-Based Heuristic for Scheduling Workflow Applications in

0

0.5

1

1.5

2

2.5

100 200 300 400 500 600 700 800 900 1000

D
e

gr
e

e
 o

f
im

b
al

an
ce

 (
D
I 2

)

Number of taks

ACO

PSO

ABC

Hybrid

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

St
an

d
ar

d
 d

e
vi

at
io

n
 (
D
I 3

)

Number of tasks

ACO

PSO

ABC

Hybrid

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 129

Cloud Computing Environments", in 24th IEEE International

Conference on Advanced Information Networking and Applications

(AINA) , pp. 400-407, April 2010.
[18] Dhinesh Babu L.D. and P. Venkata Krishna, "Honey Bee Behavior

Inspired Load Balancing of Tasks in Cloud Computing Environments,"

Applied Soft Computing, vol. 13, no. 5, pp. 2292-2303, 2013.

Gamal. F. Elhady: received the B.S, M.S and Ph.D

degree in Computer Science at Faculty of Science, in
1998 and 2006, Mansoura University, Egypt. During

1998 and 2006, he works a Demonstrator and

Lecturer Assistance in Faculty of science computer
science Dept. He is member of IAENG in USA (#

108463). His research interest includes software

programing, software testing, distributed system, data
mining, database, Artificial intelligent, image

processing and bioinformatics.

Medhat A. Tawfeek received the B.Sc. and M.Sc. in

computers and information from Menofia University,

Faculty of computers and information in 2005 and
2010, respectively and received his PhD from

Menofia University in 2015. His research interest

includes cloud computing, smart card security,
distributed system, fault tolerance and internet of

things.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 130

